Preparation of Cemented Oil Shale Residue–Steel Slag–Ground Granulated Blast Furnace Slag Backfill and Its Environmental Impact

Author:

Li XilinORCID,Li Kexin,Sun Qi,Liu Ling,Yang Jianlin,Xue Haowen

Abstract

A new environmentally friendly cemented oil shale residue–steel slag–ground granulated blast furnace slag backfill (COSGB) was prepared using oil shale residue (OSR), steel slag (SS) and ground granulated blast furnace slag (GGBS) as constituent materials. Based on univariate analysis and the Box–Behnken design (BBD) response surface method, the three responses of the 28 days unconfined compressive strength (UCS), slump and cost were used to optimize the mix ratio. Using a combination of scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and mercury intrusion porosimetry (MIP), the reaction products, microscopic morphology and pore structure of the specimens with the optimal mix ratio at different curing ages were analyzed. The influence of heavy metal ions from the raw materials and the COSGB mixtures on the groundwater environment was studied by leaching tests. The research demonstrates that the optimal mix ratio is GGBS mixing amount 4.85%, mass ratio of SS to OSR 0.82, and solid mass concentration 67.69%. At shorter curing age, the hydration products are mainly calcium alumino silicate hydrate (C-A-S-H) and calcium silicate hydrate (C-S-H) gels. With the increase of curing age, ettringite (AFt) and C-S-H gels become the main source of the UCS. Meanwhile, the porosity of the filler decreases continuously. The leaching concentration of heavy metal ions from the COSGB mixtures is all lower than the leaching concentration of raw materials and meet the requirements of the Chinese groundwater quality standard (GB/T 14848-2017). Therefore, this new COSGB cannot pollute the groundwater environment and meets backfill requirements. The proposed technology is a reliable and environmentally friendly alternative for recycling OSR and SS while simultaneously supporting cemented paste backfill (CPB).

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3