Characterization of the Dielectrophoretic Response of Different Candida Strains Using 3D Carbon Microelectrodes

Author:

Islam MonsurORCID,Keck Devin,Gilmore Jordon,Martinez-Duarte RodrigoORCID

Abstract

Bloodstream infection with Candida fungal cells remains one of the most life-threatening complications among hospitalized patients around the world. Although most of the cases are still due to Candida albicans, the rising incidence of infections caused by other Candida strains that may not respond to traditional anti-fungal treatments merits the development of a method for species-specific isolation of Candida. To this end, here we present the characterization of the dielectrophoresis (DEP) response of Candida albicans, Candida tropicalis and Candida parapsilosis. We complement such characterization with a study of the Candida cells morphology. The Candida strains exhibited subtle differences in their morphology and dimensions. All the Candida strains exhibited positive DEP in the range 10–500 kHz, although the strength of the DEP response was different for each Candida strain at different frequencies. Only Candida tropicalis showed positive DEP at 750 kHz. The current results show potential for manipulation and enrichment of a specific Candida strain at specific DEP conditions towards aiding in the rapid identification of Candida strains to enable the effective and timely treatment of Candida infections.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3