Contrastive Learning with Prototype-Based Negative Mixing for Satellite Telemetry Anomaly Detection

Author:

Guo Guohang12,Hu Tai1,Zhou Taichun12,Li Hu1,Liu Yurong1

Affiliation:

1. National Space Science Center, Chinese Academy of Sciences, Beijing 101499, China

2. Department of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Telemetry data are the most important basis for ground operators to assess the status of satellites in orbit, and telemetry data-based anomaly detection has become a key tool to improve the reliability and safety of spacecrafts. Recent research on anomaly detection focuses on constructing a normal profile of telemetry data using deep learning methods. However, these methods cannot effectively capture the complex correlations between the various dimensions of telemetry data, and thus cannot accurately model the normal profile of telemetry data, resulting in poor anomaly detection performance. This paper presents CLPNM-AD, contrastive learning with prototype-based negative mixing for correlation anomaly detection. The CLPNM-AD framework first employs an augmentation process with random feature corruption to generate augmented samples. Following that, a consistency strategy is employed to capture the prototype of samples, and then prototype-based negative mixing contrastive learning is used to build a normal profile. Finally, a prototype-based anomaly score function is proposed for anomaly decision-making. Experimental results on public datasets and datasets from the actual scientific satellite mission show that CLPNM-AD outperforms the baseline methods, achieves up to 11.5% improvement based on the standard F1 score and is more robust against noise.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly detection for space information networks: A survey of challenges, techniques, and future directions;Computers & Security;2024-04

2. Robustness Evaluation Method for Spacecraft Anomaly Detection Models;2023 CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS);2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3