Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method

Author:

Limbu Sarita,Dakshanamurthy SivanesanORCID

Abstract

Determining environmental chemical carcinogenicity is urgently needed as humans are increasingly exposed to these chemicals. In this study, we developed a hybrid neural network (HNN) method called HNN-Cancer to predict potential carcinogens of real-life chemicals. The HNN-Cancer included a new SMILES feature representation method by modifying our previous 3D array representation of 1D SMILES simulated by the convolutional neural network (CNN). We developed binary classification, multiclass classification, and regression models based on diverse non-congeneric chemicals. Along with the HNN-Cancer model, we developed models based on the random forest (RF), bootstrap aggregating (Bagging), and adaptive boosting (AdaBoost) methods for binary and multiclass classification. We developed regression models using HNN-Cancer, RF, support vector regressor (SVR), gradient boosting (GB), kernel ridge (KR), decision tree with AdaBoost (DT), KNeighbors (KN), and a consensus method. The performance of the models for all classifications was assessed using various statistical metrics. The accuracy of the HNN-Cancer, RF, and Bagging models were 74%, and their AUC was ~0.81 for binary classification models developed with 7994 chemicals. The sensitivity was 79.5% and the specificity was 67.3% for the HNN-Cancer, which outperforms the other methods. In the case of multiclass classification models with 1618 chemicals, we obtained the optimal accuracy of 70% with an AUC 0.7 for HNN-Cancer, RF, Bagging, and AdaBoost, respectively. In the case of regression models, the correlation coefficient (R) was around 0.62 for HNN-Cancer and RF higher than the SVM, GB, KR, DTBoost, and NN machine learning methods. Overall, the HNN-Cancer performed better for the majority of the known carcinogen experimental datasets. Further, the predictive performance of HNN-Cancer on diverse chemicals is comparable to the literature-reported models that included similar and less diverse molecules. Our HNN-Cancer could be used in identifying potentially carcinogenic chemicals for a wide variety of chemical classes.

Funder

United States Department of Defense

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3