Abstract
Wind power has grown popular in past recent years due to environmental issues and the search for alternative energy sources. Thus, the viability for wind power generation projects must be studied in order to attend to the environmental concerns and still be attractive and profitable. Therefore, this article aims to perform a sensitive analysis in order to identify the variables that influence most in the viability of a wind power investment for small size companies in the Brazilian northeast. For this, a stochastic analysis of viability through Monte Carlo Simulation (MCS) will be made and afterwards, Artificial Neural Networks (ANN) models will be applied for the most relevant variables identification. Through the sensitivity, it appears that the most relevant factors in the analysis are the speed of wind, energy tariff and the investment amount. Thus, the viability of the investment is straightly tied to the region where the wind turbine is installed, and the government incentives may allow decreasing in the investment amount for wind power. Based on this, incentives programs for the production of clean energy include cheaper purchase of wind turbines, lower taxing and financing rates, can make wind power more profitable and attractive.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献