Suggestion of a New Protection Scheme for a Transmission System Equipped with a Thyristor-Controlled Series Capacitor

Author:

Dinh Minh-ChauORCID,Tran Minh-QuanORCID,Lee Jae-In,Lee Seok-Ju,Lee Chur Hee,Yoon Jongsu,Park Minwon

Abstract

A thyristor-controlled series capacitor (TCSC) is employed to a transmission line in order to enhance the usable capacity of the present as well as upgraded lines, improve system stability, reduce losses, and improve power flow control capability. However, in an abnormal situation, the TCSC may transit from the existing operation mode to the other mode according to its control system and protection strategy. There is much difference in the impedance of the TCSC between each mode. This threatens the reliability of the conventional protection system, especially the distance relay, that works based on the measurement of line impedance. In this paper, we suggest a new protection scheme for a distance relay of a transmission line equipped with a TCSC. In the suggested method, in order to mitigate the effect of the TCSC in the fault loop, the TCSC injected voltage is subtracted from the measured phase voltage before supplying the voltage signal to the distance relay. The suggested scheme was verified by a real time digital simulator (RTDS)-based closed-loop test bed of a protective relay. The effect of the TCSC in the fault loop was completely mitigated. The distance relay works properly with the suggested scheme.

Funder

This work was funded by Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference19 articles.

1. Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process

2. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems;Hingorani,2019

3. Discover the World of FACT Technology,2011

4. Impact of TCSC on measured impedance by MHO distance relay on 400 kV Algerian transmission line in presence of phase to earth fault;Zellagui;J. Electr. Syst. (JES),2012

5. Impact of TCSC on the Protection of Transmission Lines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3