A Novel Photovoltaic Virtual Synchronous Generator Control Technology Without Energy Storage Systems

Author:

Bao Guangqing,Tan Hongtao,Ding Kun,Ma Ming,Wang Ningbo

Abstract

Photovoltaic virtual synchronous generator (PV-VSG) technology, by way of simulating the external characteristics of a synchronous generator (SG), gives the PV energy integrated into the power grid through the power electronic equipment the characteristics of inertial response and active frequency response (FR)—this attracts much attention. Due to the high volatility and low adjustability of PV energy output, it does not have the characteristics of a prime mover (PM), so it must be equipped with energy storage systems (ESSs) in the DC or AC side to realize the PV-VSG technology. However, excessive reliance on ESSs will inevitably affect the application of VSG technology in practical PV power plants (PV-PPs). In view of this, this paper proposes the PV power reserve control type VSG (PV-PRC-VSG) control strategy. By reducing the active power output of part of the PV-PPs, the internal PV-PPs can maintain a part of the active power up/down-regulation ability in real time, instead of relying on external ESSs. By adjusting the active reserve power of this part, the output of the PV-PPs can be controlled within a certain range, and the PV-PPs can better simulate the PM characteristics and realize the FR of the grid by combining the VSG technology. At the same time, the factors affecting the reserve ratio are analyzed, and the position of the voltage operating point in PRC mode is deduced. Finally, the simulation results show that the proposed control strategy is effective and correct.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3