Evidential Data Fusion for Characterization of Pavement Surface Conditions during Winter Using a Multi-Sensor Approach

Author:

Diaby IssiakaORCID,Germain MickaëlORCID,Goïta KalifaORCID

Abstract

The role of a service that is dedicated to road weather analysis is to issue forecasts and warnings to users regarding roadway conditions, thereby making it possible to anticipate dangerous traffic conditions, especially during the winter period. It is important to define pavement conditions at all times. In this paper, a new data acquisition approach is proposed that is based upon the analysis and combination of two sensors in real time by nanocomputer. The first sensor is a camera that records images and videos of the road network. The second sensor is a microphone that records the tire–pavement interaction, to characterize each surface’s condition. The two low-cost sensors were fed to different deep learning architectures that are specialized in surface state analysis; the results were combined using an evidential theory-based data fusion approach. This study is a proof of concept, to test an evidential approach for improving classification with deep learning, applied to only two sensors; however, one could very well add more sensors and make the nanocomputers communicate together, to analyze a larger urban environment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference51 articles.

1. Road Surface Status Classification Using Spectral Analysis of NIR Camera Images

2. Optimisation de la Gestion de L’information Météo-Routière pour le Ministère des Transports du Québec—Direction de l’Estrie;Morin,2010

3. Outil Innovant pour la Gestion des Routes;Khoderagha,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3