Real-Time Life-Cycle Monitoring of Composite Structures Using Piezoelectric-Fiber Hybrid Sensor Network

Author:

Yu YinghongORCID,Liu Xiao,Yan Jiajia,Wang Yishou,Qing XinlinORCID

Abstract

In this paper, an in situ piezoelectric-fiber hybrid sensor network was developed to monitor the life-cycle of carbon fiber-reinforced plastics (CFRPs), from the manufacturing phase to the life in service. The piezoelectric lead-zirconate titanate (PZT) sensors were inserted inside the composite structures during the manufacturing process to monitor important curing parameters, including the storage modulus of resin and the progress of the reaction (POR). The strain that is related to the storage modulus and the state of resin was measured by embedded fiber Bragg grating (FBG) sensors, and the gelation moment identified by the FBG sensors was very close to those determined by dynamic mechanical analysis (DMA) and POR. After curing, experiments were conducted on the fabricated CFRP specimen to investigate the damage identification capability of the embedded piezoelectric sensor network. Furthermore, a modified probability diagnostic imaging (PDI) algorithm with a dynamically adaptive shape factor and fusion frequency was proposed to indicate the damage location in the tested sample and to greatly improve the position precision. The experimental results demonstrated that the average relative distance error (RDE) of the modified PDI method was 68.48% and 46.97% lower than those of the conventional PDI method and the PDI method, respectively, with an averaged shape factor and fusion frequency, indicating the effectiveness and applicability of the proposed damage imaging method. It is obvious that the whole life-cycle of CFRPs can be effectively monitored by the piezoelectric-fiber hybrid sensor network.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3