Reduction of Power Production Costs in a Wind Power Plant–Flywheel Energy Storage System Arrangement

Author:

Tomczewski Andrzej,Kasprzyk LeszekORCID,Nadolny Zbigniew

Abstract

The paper presents issues of optimisation of a wind power plant–energy storage system (WPP-ESS) arrangement operating in a specific geographical location. An algorithm was developed to minimise the unit discounted cost of electricity generation in a system containing a wind power plant and flywheel energy storage. In order to carry out the task, population heuristics of the genetic algorithm were used with modifications introduced by the author (taking into account the coefficient of variation of the generation in the quasi-static term of the penalty and the selection method). The set of inequality restrictions related to the technical parameters of turbines and energy storage and the parameters of energy storage management has been taken into account with the application of the Powell–Skolnick penalty function (Michalewicz modification). The results of sample optimisation calculations for two wind power plants of 2 MW were presented. The effects achieved in the process of optimisation were described—especially the influence of the parameters of the energy storage management system on the unit cost of electricity generation. The use of a system with higher unit costs of energy generation compared to independently operating wind turbines was justified in the context of improving the conditions of compatibility with the power system—the strategy belongs to a power firming group.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3