Abstract
This paper presents a novel data-driven approach, based on sensor network analysis in Photovoltaic (PV) power plants, to unveil hidden precursors in failure modes. The method is based on the analysis of signals from PV plant monitoring, and advocates the use of graph modeling techniques to reconstruct and investigate the connectivity among PV field sensors, as is customary for Complex Network Analysis (CNA) approaches. Five month operation data are used in the present study. The results showed that the proposed methodology is able to discover specific hidden dynamics, also referred to as emerging properties in a Complexity Science perspective, which are not visible in the observation of individual sensor signal but are closely linked to the relationships occurring at the system level. The application of exploratory data analysis techniques on those properties demonstrated, for the specific plant under scrutiny, potential for early fault detection.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献