Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems

Author:

Guo XiaofengORCID,Goumba Alain Pascal,Wang Cheng

Abstract

Large-scale solar heating for the building sector requires an adequate Thermal Energy Storage (TES) strategy. TES plays the role of load shifting between the energy demand and the solar irradiance and thus makes the annual production optimal. In this study, we report a simplified algorithm uniquely based on energy flux, to evaluate the role of active TES on the annual performance of a large-scale solar heating for residential thermal energy supply. The program considers different types of TES, i.e., direct and indirect, as well as their specifications in terms of capacity, storage density, charging/discharging limits, etc. Our result confirms the auto-regulation ability of indirect (latent using Phase Change Material (PCM), or Borehole thermal storage (BTES) in soil) TES which makes the annual performance comparable to that of direct (sensible with hot water) TES. The charging and discharging restrictions of the latent TES, until now considered as a weak point, could retard the achievement of fully-charged situation and prolong the charging process. With its compact volume, the indirect TES turns to be promising for large-scale solar thermal application.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3