Abstract
The present study establishes a stochastic adaptive robust dispatch model for virtual power plants (VPPs) to address the risks associated with uncertainties in electricity market prices and photovoltaic (PV) power outputs. The model consists of distributed components, such as the central air-conditioning system (CACS) and PV power plant, aggregated by the VPP. The uncertainty in the electricity market price is addressed using a stochastic programming approach, and the uncertainty in PV output is addressed using an adaptive robust approach. The model is decomposed into a master problem and a sub-problem using the binding scenario identification approach. The binding scenario subset is identified in the sub-problem, which greatly reduces the number of iterations required for solving the model, and thereby increases the computational efficiency. Finally, the validity of the VPP model and the solution algorithm is verified using a simulated case study. The simulation results demonstrate that the operating profit of a VPP with a CACS and other aggregated units can be increased effectively by participating in multiple market transactions. In addition, the results demonstrate that the binding scenario identification algorithm is accurate, and its computation time increases slowly with increasing scenario set size, so the approach is adaptable to large-scale scenarios.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献