Non-Intrusive Load Monitoring via Deep Learning Based User Model and Appliance Group Model

Author:

Peng Ce,Lin Guoying,Zhai Shaopeng,Ding Yi,He Guangyu

Abstract

Non-Intrusive Load Monitoring (NILM) increases awareness on user energy usage patterns. In this paper, an efficient and highly accurate NILM method is proposed featuring condensed representation, super-state and fusion of two deep learning based models. Condensed representation helps the two models perform more efficiently and preserve longer-term information, while super-state helps the model to learn correlations between appliances. The first model is a deep user model that learns user appliances usage patterns to predict the next appliance usage behavior based on past behaviors by capturing the dynamics of user behaviors history and appliances usage habits. The second model is a deep appliance group model that learns the characteristics of appliances with temporal and electrical information. These two models are then fused to perform NILM. The case study based on REFIT datasets demonstrates that the proposed NILM method outperforms two state-of-the-art benchmark methods.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Targeted Adaptive Non-Intrusive Load Monitoring;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

2. NILM-LANN: A Lightweight Attention-based Neural Network in Non-Intrusive Load Monitoring;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

3. An artificial intelligence‐based non‐intrusive load monitoring of energy consumption in an electrical energy system using a modified K‐Nearest Neighbour algorithm;IET Smart Cities;2024-01-24

4. Rule-based Self-supervised learning Non-Intrusive Load Monitoring system for residential houses;2023 IEEE 8th International Conference on Recent Advances and Innovations in Engineering (ICRAIE);2023-12-02

5. New hybrid deep learning models for multi-target NILM disaggregation;Energy Efficiency;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3