Abstract
This paper proposes an optimal Energy Storage System (ESS) scheduling algorithm Building Energy Management System (BEMS). In particular, the focus is placed on how to reduce the peak load using ESS and load forecast. To this end, first, an existing deep learning-based load forecast method is applied to a real building energy prediction and it is shown that the deep learning-based method leads to an accuracy-enhanced load forecast. Second, an optimization problem is formulated in order to devise an ESS scheduling. In the optimization problem, the objective function and constraints are defined such that the peak load is reduced; the cost for electricity is minimized; and the ESS’s lifetime is elongated considering the accuracy-enhanced load forecast, real-time electricity price, and the state-of-charge of the ESS. For the purpose of demonstrating the effectiveness of the proposed ESS scheduling method, it is implemented using a real building load power and temperature data. The simulation results show that the proposed method can reduce the peak load and results in smooth charging and discharging, which is important for the ESS lifetime.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献