Characteristic Analysis and Predictive Torque Control of the Modular Three-Phase PMSM for Low-Voltage High Power Application

Author:

Rao Zhimeng,Zhang Wenjuan,Wu Gongping,Zheng Jian,Huang Shoudao

Abstract

In this study, a novel modular three-phase permanent magnet synchronous motor (PMSM) is proposed for low-voltage high power applications. The proposed modular three-phase PMSM has an independent segregated three-phase winding configuration, facilitating the implementation of the control algorithm. Firstly, on the basis of the electromagnetic properties, the mathematical model of the modular three-phase PMSM is established, considering the asymmetrical mutual inductances investigated by finite element analysis (FEA). Then, the predictive torque control (PTC) method combining the inductance characteristics of modular three-phase PMSM is developed, and excellent performance is obtained by adjusting the stator flux and torque. Finally, simulation and experiment are performed, and the results show that the proposed novel modular three-phase PMSM with the PTC method exhibits excellent control performance, and small stator current total harmonic distortion (THD).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Switching Torque Ripple Reduction Using Multi-Modules PMSM Drive;2023 2nd International Conference on Power Systems and Electrical Technology (PSET);2023-08-25

2. Identification of Parameters and States in PMSMs;Electronics;2023-06-11

3. Fault Diagnosis and Torque Ripple Minimization Control for Modular Permanent-Magnet In-Wheel Motor with Interturn Fault;2023 IEEE 6th International Electrical and Energy Conference (CIEEC);2023-05-12

4. Universal Model of a Multiphase Permanent Magnet Synchronous Motor;2022 IEEE 1st Industrial Electronics Society Annual On-Line Conference (ONCON);2022-12-09

5. Investigation on the Torque Ripple Reduction Method of a Hybrid Electric Vehicle Motor;Energies;2021-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3