Abstract
A simple ultrasonic radiation method was employed for the preparation of zinc and cadmium sulfide solid solution (ZnxCd1−xS; x = 0–0.25 wt.%) with the aim to investigate its efficiency for H2 production via a visible light-driven water-splitting reaction. The catalyst characterization by X-ray diffraction confirmed the formation of solid solution (ZnxCd1−xS) between CdS and ZnS phases. All catalysts exhibited hierarchical morphology (from SEM and TEM) formed by aggregated nanoparticles of ZnxCd1−xS solid solution with crystals showing mainly (111) planes of cubic CdS phase. The crystal size linearly decreased with an increase in Zn incorporation in the crystal lattice (from 4.37 nm to 3.72 nm). The ZnxCd1−xS photocatalysts showed a gradual increase in the H2 evolution, with an increase in the Zn concentration up to 0.2 wt.% making the most effective Zn0.2Cd0.8S catalyst toward H2 production. From the catalyst activity–structure correlation, it has been concluded that the twin-like CdS structure, the (111) plane and specific morphology are the main factors influencing the catalyst effectivity toward H2 production. All those factors compensated for the negative effect of an increase in band gap energy (Ebg) after ZnS incorporation into solid solution (from 2.21 eV to 2.34 eV). The effect of the catalyst morphology is discussed by comparing H2 evolution over unsupported and supported Zn0.2Cd0.8S solid solutions.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献