Performance Assessment of an Islanded Hybrid Power System with Different Storage Combinations Using an FPA-Tuned Two-Degree-of-Freedom (2DOF) Controller

Author:

Hussain Israfil,Das Dulal ChandraORCID,Sinha Nidul,Latif Abdul,Hussain S. M. SuhailORCID,Ustun Taha SelimORCID

Abstract

During the past few decades, there has been significant growth in the renewable energy market because of increased concern over global warming and the continuous depletion of fossil fuel resources. There is a promising solar thermal technology that utilizes low-temperature heat to generate electricity. The conversion process of thermal energy to electricity is based on the principle of an organic Rankine cycle (ORC). This study investigated a novel islanded hybrid power system consisting of an ORC low temperature solar thermal system, wind (WTG), diesel generation (DEG) set, and combined application of an energy storage system (ESS), such as a battery (BESS), super magnetic energy storage (SMES), and an ultracapacitor (UC) unit. Furthermore, the hybrid system was employed with a single controller (one of proportional-integral (PI), PI with derivative (PID), two-degree-of-freedom (2DOF) PI, and 2DOF PID controllers) with proportionate gains to the DEG, and the ESS, which is another unique aspect of this work. Moreover, a comparative performance assessment of the flower pollination algorithm (FPA) to tune the PI, PID, 2DOF PI, and 2DOF PID controllers was carried out. Finally, the performance of the above hybrid system was compared with different ESS combinations, namely, (i) only BESS, (ii) BESS + UC, and (iii) BESS + SMES. The simulation results indicated that a renewable integrated isolated power system with BESS + SMES provided a better response than the other ESS combinations. In fact, the presence of comparative dynamic responses verified the superiority of an FPA-tuned 2DOF PID compared with other FPA-tuned controllers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3