Real-Time Implementation of a Super Twisting Algorithm for PEM Fuel Cell Power System

Author:

Derbeli MohamedORCID,Barambones OscarORCID,Ramos-Hernanz Jose AntonioORCID,Sbita Lassaad

Abstract

Proton exchange membrane fuel cell (PEMFC) topology is becoming one of the most reliable and promising alternative resource of energy for a wide range of applications. However, efficiency improvement and lifespan extension are needed to overcome the limited market of fuel cell technologies. In this paper, an efficient approach based on a super-twising algorithm (STA) is proposed for the PEMFC system. The control objective is to lengthen the fuel cell lifetime by improving its power quality, as well as to keep the system operating at an optimal and efficient power point. The algorithm adjusts the PEMFC operating point to the optimum power by tuning the duty cycle of the boost converter. The closed-loop system includes the Heliocentris hy-ExpertTM PEMFC, DC–DC boost converter, DSPACE DS1104, dedicated PC, and a programmable electronic load. The practical implementation of the proposed STA on a hardware setup is performed using a dSPACE real-time digital control platform. The data acquisition and the control system are conducted together with the dSPACE 1104 controller board. To demonstrate the performance of the proposed algorithm, experimental results are compared with 1-order sliding mode control (SMC) under different load resistance. The obtained results demonstrate the validity of the proposed control scheme by ensuring at least 72% of the maximum power produced by PEMFC. In addition, it is proven that the STA ensures all the fundamental properties of the 1-order SMC, as well as providing chattering reduction of 91%, which will ameliorate as a consequence the fuel cell lifetime.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic model and robust control for the PEM fuel cell systems;Results in Engineering;2024-06

2. Analysis and implementation of feedback linearisation controller for fuel cell-fed boost converter;International Journal of Electronics;2024-01-12

3. Power controlled by Two Type Direct Power Control Quality Improvement of PV Grid-tied based on Two Parallel Inverters;Electrotehnica, Electronica, Automatica;2023-08-15

4. Adaptive Controller PI-Fuzzy Logic Speed for Brushless DC Motor Drive Supplied by PEMFC Cell Optimized by P&O;International Journal on Applied Physics and Engineering;2023-07-17

5. Robust Control of Interleaved Boost Converter for Open-Cathode PEM Fuel Cell Systems;2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS);2023-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3