An Approach to State of Charge Estimation of Lithium-Ion Batteries Based on Recurrent Neural Networks with Gated Recurrent Unit

Author:

Li Chaoran,Xiao Fei,Fan YaxiangORCID

Abstract

State of charge (SOC) represents the amount of electricity stored and is calculated and used by battery management systems (BMSs). However, SOC cannot be observed directly, and SOC estimation is a challenging task due to the battery’s nonlinear characteristics when operating in complex conditions. In this paper, based on the new advanced deep learning techniques, a SOC estimation approach for Lithium-ion batteries using a recurrent neural network with gated recurrent unit (GRU-RNN) is introduced where observable variables such as voltage, current, and temperature are directly mapped to SOC estimation. The proposed technique requires no model or knowledge of the battery’s internal parameters and is able to estimate SOC at various temperatures by using a single set of self-learned network parameters. The proposed method is evaluated on two public datasets of vehicle drive cycles and another high rate pulse discharge condition dataset with mean absolute errors (MAEs) of 0.86%, 1.75%, and 1.05%. Experiment results show that the proposed method is accurate and robust.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3