PISCO_HyM_GR2M: A Model of Monthly Water Balance in Peru (1981–2020)

Author:

Llauca HaroldORCID,Lavado-Casimiro WaldoORCID,Montesinos Cristian,Santini William,Rau Pedro

Abstract

Quantification of the surface water offer is crucial for its management. In Peru, the low spatial density of hydrometric stations makes this task challenging. This work aims to evaluate the hydrological performance of a monthly water balance model in Peru using precipitation and evapotranspiration data from the high-resolution meteorological PISCO dataset, which has been developed by the National Service of Meteorology and Hydrology of Peru (SENAMHI). A regionalization approach based on Fourier Amplitude Sensitivity Testing (FAST) of the rainfall-runoff (RR) and runoff variability (RV) indices defined 14 calibration regions nationwide. Next, the GR2M model was used at a semi-distributed scale in 3594 sub-basins and river streams to simulate monthly discharges from January 1981 to March 2020. Model performance was evaluated using the Kling–Gupta efficiency (KGE), square root transferred Nash–Sutcliffe efficiency (NSEsqrt), and water balance error (WBE) metrics. The results show a very well representation of monthly discharges for a large portion of Peruvian sub-basins (KGE ≥ 0.75, NSEsqrt ≥ 0.65, and −0.29 < WBE < 0.23). Finally, this study introduces a product of continuous monthly discharge rates in Peru, named PISCO_HyM_GR2M, to understand surface water balance in data-scarce sub-basins.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference72 articles.

1. Integrated Water Resources Management: A Reassessment

2. Integrated Water Resources Management in Peru

3. Restructuring and Rescaling Water Governance in Mining Contexts: The Co-Production of Waterscapes in Peru;Budds;Water Altern.,2012

4. The influence of distributed input data on the hydrological modelling of monthly river flow regimes in West Africa

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3