Manganese-Iron Phosphate Nodules at the Groken Site, Gale Crater, Mars

Author:

Treiman Allan H.1,Lanza Nina L.2,VanBommel Scott3,Berger Jeff4ORCID,Wiens Roger5ORCID,Bristow Thomas6,Johnson Jeffrey7ORCID,Rice Melissa8,Hart Reginald8,McAdam Amy9,Gasda Patrick2,Meslin Pierre-Yves10ORCID,Yen Albert11,Williams Amy J.12ORCID,Vasavada Ashwin11,Vaniman David13,Tu Valerie14,Thorpe Michael9,Swanner Elizabeth D.15ORCID,Seeger Christina16,Schwenzer Susanne P.17ORCID,Schröder Susanne18ORCID,Rampe Elizabeth14,Rapin William19,Ralston Silas J.4,Peretyazhko Tanya4,Newsom Horton20,Morris Richard V.14ORCID,Ming Douglas14,Loche Matteo10,Le Mouélic Stéphane21ORCID,House Christopher22ORCID,Hazen Robert23ORCID,Grotzinger John P.16,Gellert Ralf24ORCID,Gasnault Olivier8ORCID,Fischer Woodward W.16,Essunfeld Ari2ORCID,Downs Robert T.25ORCID,Downs Gordon W.25,Dehouck Erwin26,Crossey Laura J.20,Cousin Agnes10,Comellas Jade M.27,Clark Joanna V.16,Clark Benton28ORCID,Chipera Steve13,Caravaca Gwenaël29ORCID,Bridges John30,Blake David F.6,Anderson Ryan31

Affiliation:

1. Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Blvd., Houston, TX 77058, USA

2. Los Alamos National Laboratory, Los Alamos, NM 87545, USA

3. McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA

4. Jacobs—JETS, NASA Johnson Space Center, Houston, TX 77058, USA

5. Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA

6. NASA Ames Research Center, Mountain View, CA 94035, USA

7. Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA

8. Geology Department, Western Washington University, Bellingham, WA 98225, USA

9. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

10. Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Observatoire Midi-Pyrénées, 31400 Toulouse, France

11. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

12. Department of Geological Sciences, University of Florida, Gainsville, FL 32611, USA

13. Planetary Science Institute, Tucson, AZ 85719, USA

14. NASA Johnson Space Center, Houston, TX 77058, USA

15. Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA

16. California Institute of Technology, Pasadena, CA 91125, USA

17. OUAstrobiology, Open University, Milton Keynes MK7 6AA, UK

18. Deutsche Zentrum für Luft- und Raumfahrt (DLR), Institute of Optical Sensor Systems, 12489 Berlin, Germany

19. Institut de Recherche en Astrophysique et Planétologie, Toulouse, France

20. Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87106, USA

21. Laboratoire de Planétologie et Géosciences, UMR CNRS 6112, Nantes Université, Université d’Angers, 44322 Nantes, France

22. College of Earth and Mineral Sciences, The Pennsylvania State University, State College, PA 16802, USA

23. Geophysical Laboratory, Carnegie Institution, Washington, DC 20015, USA

24. Physics Department, University of Guelph, Guelph, ON N1G 2W1, Canada

25. Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA

26. Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Université Lyon, 69622 Villeurbanne, France

27. Hawai’i Institute of Geophysics and Planetology, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA

28. Space Sciences Institute, Boulder, CO 80301, USA

29. Institut de Recherche en Astrophysique et Planetologie, Universite Paul Sabatier Toulouse III, Toulouse, France

30. Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK

31. US Geological Survey, Astrogeology Center, Flagstaff, AZ 86001, USA

Abstract

The MSL Curiosity rover investigated dark, Mn-P-enriched nodules in shallow lacustrine/fluvial sediments at the Groken site in Glen Torridon, Gale Crater, Mars. Applying all relevant information from the rover, the nodules are interpreted as pseudomorphs after original crystals of vivianite, (Fe2+,Mn2+)3(PO4)2·8H2O, that cemented the sediment soon after deposition. The nodules appear to have flat faces and linear boundaries and stand above the surrounding siltstone. ChemCam LIBS (laser-induced breakdown spectrometry) shows that the nodules have MnO abundances approximately twenty times those of the surrounding siltstone matrix, contain little CaO, and have SiO2 and Al2O3 abundances similar to those of the siltstone. A deconvolution of APXS analyses of nodule-bearing targets, interpreted here as representing the nodules’ non-silicate components, shows high concentrations of MnO, P2O5, and FeO and a molar ratio P/Mn = 2. Visible to near-infrared reflectance of the nodules (by ChemCam passive and Mastcam multispectral) is dark and relatively flat, consistent with a mixture of host siltstone, hematite, and a dark spectrally bland material (like pyrolusite, MnO2). A drill sample at the site is shown to contain minimal nodule material, implying that analyses by the CheMin and SAM instruments do not constrain the nodules’ mineralogy or composition. The fact that the nodules contain P and Mn in a small molar integer ratio, P/Mn = 2, suggests that the nodules contained a stoichiometric Mn-phosphate mineral, in which Fe did (i.e., could) not substitute for Mn. The most likely such minerals are laueite and strunzite, Mn2+Fe3+2(PO4)2(OH)2·8H2O and –6H2O, respectively, which occur on Earth as alteration products of other Mn-bearing phosphates including vivianite. Vivianite is a common primary and diagenetic precipitate from low-oxygen, P-enriched waters. Calculated phase equilibria show Mn-bearing vivianite could be replaced by laueite or strunzite and then by hematite plus pyrolusite as the system became more oxidizing and acidic. These data suggest that the nodules originated as vivianite, forming as euhedral crystals in the sediment, enclosing sediment grains as they grew. After formation, the nodules were oxidized—first to laueite/strunzite yielding the diagnostic P/Mn ratio, and then to hematite plus an undefined Mn oxy-hydroxide (like pyrolusite). The limited occurrence of these Mn-Fe-P nodules, both in space and time (i.e., stratigraphic position), suggests a local control on their origin. By terrestrial analogies, it is possible that the nodules precipitated near a spring or seep of Mn-rich water, generated during alteration of olivine in the underlying sediments.

Funder

NASA

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3