Stimulation Behavior of Fracture Networks in the Second Hydrate Trial Production Area of China Considering the Presence of Multiple Layers

Author:

Chen Chen12ORCID,Li Xitong12ORCID,Zhong Xiuping12ORCID

Affiliation:

1. College of Construction Engineering, Jilin University, Changchun 130026, China

2. Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China

Abstract

The fracture network’s stimulation of China’s second hydrate trial production area was investigated. First, the stimulation potential of the fracture network and the influence of well arrangement on hydrate development were explored. Second, the fracture distributions’ influence on development behavior was investigated. Results showed that the fracture network could cause the trial production reservoir to reach the commercial production rate. The average CH4 production rate of unit horizontal well length using the depressurization method and depressurization combined with thermal stimulation (combined method) were 61.3 and 151.5 m3/d with the fracture network and 23.7 and 14.3 m3/d without the fracture network. In addition, without the fracture network, the development behavior of wells arranged in the mixed layer was better than that of wells arranged in the hydrate layer. However, with the fracture network, the result was reversed. With the depressurization method, the best production behavior was obtained by fracturing in the hydrate layer; however, for the combined method, the best production behavior was obtained by fracturing in the hydrate and mixed layer, while fracturing in the free gas layer was useless. This study provides a valuable reference for the hydrate development of China’s trial production reservoir.

Funder

National Natural Science Foundation of China

Program for JLU Science and Technology Innovative Research Team

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3