Research on Reactive Power Optimization of Synchronous Condensers in HVDC Transmission Based on Reactive Power Conversion Factor

Author:

Tao Zican1ORCID,Wang Tao2,Cai Defu2,Chen Rusi2

Affiliation:

1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

2. Electric Power Research Institute, State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China

Abstract

With the rapid development of high-voltage direct current (HVDC) transmission systems, the coupling between AC and DC grids is becoming increasingly close. Voltage disturbances in the grid can easily cause commutation failures in the DC system, threatening its safe and stable operation. The new generation of synchronous condensers (SCs) and modified synchronous condenser units are powerful reactive power support devices widely used in large-capacity DC transmission systems. To maximize the voltage support and commutation failure suppression of SCs, this paper proposes improvements in the initial operating state of SCs, using the Shanxi–Wuhan HVDC receiving end in the Hubei power grid as an example, to better support the HVDC commutation process. Additionally, a reactive power output optimization strategy for SCs is proposed, considering the reactive power equivalent factor of electrical connections between grid nodes. This strategy determines the optimal reactive power output limit of SCs near the converter station to suppress DC commutation failures. Simulation results show that this strategy effectively utilizes the dynamic support capabilities of SCs, prevents DC commutation failures, improves HVDC transmission capacity, and enhances the safety and stability of the receiving end power grid, providing theoretical guidance for reactive power output control.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3