Resilience Improvement of Microgrid Cluster Systems Based on Two-Stage Robust Optimization

Author:

Ji Shui1,Liu Yun1,Wu Shanshan1ORCID,Li Xiao1

Affiliation:

1. State Power Investment Corporation Research Institute, Beijing 102209, China

Abstract

For microgrids in deep and remote sea areas, ocean currents are widely used as an emerging power generation resource. Implementing ES systems is crucial for smooth power output and grid stability. The stability of power output from sea current energy generation faces challenges due to speed fluctuations. Enhancing resilience requires addressing transmission line failures caused by extreme seabed conditions, and ensuring operational security. An ES configuration method considering line faults based on two-stage robust optimization is presented in this paper. First, in order to simultaneously consider planning and operation, a defender–attacker–defender (DAD) model was established. Additionally, the capacity, rated power, and charging/discharging power of ES during operation were jointly optimized through the column-and-constraint generation (C&CG) algorithm. In addition, the rationality and effectiveness of the proposed method were demonstrated through experiments on modified IEEE six-bus and fifty-seven-bus systems. The results show that a distributed ES configuration increased system resilience by 54.60% and reduced abandoned power rate by 57.06% compared with the situation without ES configuration.

Publisher

MDPI AG

Reference20 articles.

1. Wang, P., and Chen, L. (2023). Economic and Environmental Impacts of Ocean Current Energy Development: A Comparative Analysis. J. Cleaner Prod., 332.

2. A review of energy storage technologies for marine current energy systems;Zhou;Renew. Sustain. Energy Rev.,2013

3. Attraction, challenge and current status of marine current energy;Chen;IEEE Access,2018

4. Deep-sea organisms research oriented by deep-sea technologies development;Feng;Sci. Bull.,2022

5. Overview of current development in electrical energy storage technologies and the application potential in power system operation;Luo;Appl. Energy,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3