Stochastic Convex Cone Programming for Joint Optimal BESS Operation and Q-Placement in Net-Zero Microgrids

Author:

Mohammadyari Milad1,Eskandari Mohsen2ORCID

Affiliation:

1. Department of Electrical Engineering, University of Tehran, Tehran 1417466191, Iran

2. School of Electrical Engineering and Telecommunications, University of New South Wales Sydney, Sydney, NSW 2052, Australia

Abstract

Microgrids have emerged as a pivotal solution in the quest for efficient, resilient, and sustainable energy systems. Comprising diverse distributed energy resources, microgrids present a compelling opportunity to revolutionize how we generate, store, and distribute electricity, while simultaneously reducing carbon footprints. This paper proposes an optimal battery energy storage system (BESS) management scheme, along with capacitor placement for reactive power (Q)-compensation, and scheduling for the purpose of a renewable-based microgrid’s loss minimization. The proposed model evaluates the impact of BESS management on energy efficiency and analyzes how optimal scheduling of BESS influences system losses. Furthermore, it investigates the coordinated planning and operation of active assets within the microgrid, such as controllable capacitor banks, in enhancing overall efficiency. The model is formulated as a mixed-integer second-order cone programming (MISOCP) problem which is solved for both deterministic and stochastic generation and consumption data. The proposed model is tested on a 21-bus microgrid comprising photovoltaic and hydropower energy resources, and the efficacy of the model is approved by several case studies. The simulation results show that the proposed method can reduce microgrid energy losses by approximately 12 percent using the deterministic approach and around 14 percent with the stochastic approach.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3