Optimizing Energy Efficiency in Deep-Sea Mining: A Study on Swirling Flow Transportation of Double-Size Mineral Particles

Author:

Chen Xiaodong1,Chen Yaoyao1ORCID,Wu Xu1,Zhu Peilin1,Yang Lele1

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China

Abstract

Deep-sea minerals are regarded as the most economically viable and promising mineral resource. Vertical hydraulic lifting represents one of the most promising methods for deep-sea mining lifting systems. To mitigate the potential for clogging due to the aggregation of particles in vertical pipe transport during deep-sea mining operations, this paper employs numerical simulations utilizing the computational fluid dynamics and discrete element method (CFD-DEM) model to investigate the swirling flow transportation of mineral particles. The characteristics of the swirling flow field and the motion law of double-size particles at different swirling ratios are investigated. The findings demonstrate that, in comparison to axial transport within the pipeline, the particle movement observed in swirling flow transport exhibits an upward spiral trajectory. This phenomenon facilitates the orderly movement of particles, thereby enhancing the fluidization of particles within the pipeline. An increase in the swirling ratio (SR) has a considerable impact on the velocity within the pipe. The tangential velocity distribution undergoes a gradual transition from centrosymmetric to non-centrosymmetric as the distance from the inlet increases. An increase in the SR results in an enhanced aggregation of particles at the wall, accompanied by a notable rise in the local particle concentration. The value of SR = 0.3 represents a critical threshold. When SR exceeds this value, the distribution of particles in the cross-section reaches a relatively stable state, rendering it challenging to further alter the distribution and concentration of particles, even if the SR is augmented. Furthermore, the maximum local particle concentration in the vicinity of the wall tends to be stable. These results provide valuable insights into vertical pipe swirling flow transport for deep-sea mining.

Funder

National Key Research and Development Program of China

Science and Technology Project in Guangzhou

Fundamental Research Funds for the Central Universities

Key Technologies Program of Nansha District

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3