Affiliation:
1. Sustainable Energy Center, CERTI Foundation, Florianópolis 88040-970, SC, Brazil
Abstract
The installation of electric vehicle supply equipment (EVSE) increases demand and peak loads, potentially straining existing energy distribution infrastructure. Dispersed and inadequately planned placement of charging points (CPs) can disrupt the electrical grid, surpass contracted demand thresholds, and require infrastructure upgrades, thereby incurring unfeasible costs for Distribution System Operators (DSOs). In this context, it is necessary to recognize the role of business models in enabling effective electrification of the transportation sector. In response to these challenges, this paper introduces a novel e-mobility hub management strategy, tailored for implementation in the Brazilian context. The proposed strategy revolves around a microgrid configuration encompassing dispatchable and photovoltaic generation, a battery energy storage system (BESS), EVSE infrastructure, and local loads. Moreover, this centralized controller facilitates the implementation of dynamic pricing and demand-response mechanisms, integral to business models seeking to integrate EVSE into the distribution grid. To validate the efficacy of the proposed solution, hardware-in-the-loop (HIL) simulations of the microgrid system are conducted. These simulations, incorporating the centralized controller, serve as a tool for assessing system performance and viability before on-site equipment deployment. Finally, this paper concludes with the insights gleaned from test analysis and its discussion through a selection of the most expressive scenarios, including islanded and connected operation modes.
Funder
Brazilian Electricity Regulatory Agency
Reference26 articles.
1. UN (2024, April 15). COP28 and International Energy Agency Reaffirm 1.5 °C—Aligned Energy Transition, Available online: https://www.cop28.com/en/news/2023/12/COP28-and-International-Energy-Agency.
2. Icaza, D., Vallejo-Ramirez, D., Guerrero Granda, C., and Marín, E. (2024). Challenges, Roadmaps and Smart Energy Transition towards 100% Renewable Energy Markets in American Islands: A Review. Energies, 17.
3. International Energy Agency (2023). World Energy Outlook 2023.
4. IEC 61850-Based Communication Modeling of EV Charge-Discharge Management for Maximum PV Generation;Ustun;IEEE Access,2019
5. IEA (2023). Global EV Outlook 2023: Catching Up with Climate Ambitions.