An Improved Empirical Wavelet Transform and Its Applications in Rolling Bearing Fault Diagnosis

Author:

Xu YonggangORCID,Zhang Kun,Ma Chaoyong,Li Xiaoqing,Zhang Jianyu

Abstract

As essential but easily damaged parts of rotating machinery, rolling bearings have been deeply researched and widely used in mechanical processes. The real-time detection of bearing state and simple, rapid, and accurate diagnosis of bearing fault are indispensable to the industrial system. The bearing’s inner ring and outer ring vibration acceleration can be measured by high-precision sensors, and the running state of the bearing can be effectively extracted. The empirical wavelet transform (EWT) can adaptively decompose the vibration acceleration signal into a series of empirical modes. However, this method not only runs slowly, but also causes inexplicable empirical modes due to the unreasonable boundaries of the frequency domain division. In this paper, a new method is proposed to improve the empirical wavelet transform by dividing the boundaries from the spectrum, named the fast empirical wavelet transform (FEWT). The proposed method chooses different points in the Fourier transform of the spectrum (key function) to reconstruct the trend component of the spectrum. The minimum points in the trend component divide the spectrum into a series of bands. A more reasonable set of boundaries can be found by choosing appropriate trend components to obtain effective empirical modes. The simulation results show that the proposed method is effective and that the acquired empirical mode is more reasonable than the EWT method. Combining kurtosis with fault feature extraction of inner and outer rings of bearings, the method is successfully applied to the fault diagnosis of rolling bearings.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3