Classification of Heart Sound Signal Using Multiple Features

Author:

Yaseen ,Son Gui-Young,Kwon Soonil

Abstract

Cardiac disorders are critical and must be diagnosed in the early stage using routine auscultation examination with high precision. Cardiac auscultation is a technique to analyze and listen to heart sound using electronic stethoscope, an electronic stethoscope is a device which provides the digital recording of the heart sound called phonocardiogram (PCG). This PCG signal carries useful information about the functionality and status of the heart and hence several signal processing and machine learning technique can be applied to study and diagnose heart disorders. Based on PCG signal, the heart sound signal can be classified to two main categories i.e., normal and abnormal categories. We have created database of 5 categories of heart sound signal (PCG signals) from various sources which contains one normal and 4 are abnormal categories. This study proposes an improved, automatic classification algorithm for cardiac disorder by heart sound signal. We extract features from phonocardiogram signal and then process those features using machine learning techniques for classification. In features extraction, we have used Mel Frequency Cepstral Coefficient (MFCCs) and Discrete Wavelets Transform (DWT) features from the heart sound signal, and for learning and classification we have used support vector machine (SVM), deep neural network (DNN) and centroid displacement based k nearest neighbor. To improve the results and classification accuracy, we have combined MFCCs and DWT features for training and classification using SVM and DWT. From our experiments it has been clear that results can be greatly improved when Mel Frequency Cepstral Coefficient and Discrete Wavelets Transform features are fused together and used for classification via support vector machine, deep neural network and k-neareast neighbor(KNN). The methodology discussed in this paper can be used to diagnose heart disorders in patients up to 97% accuracy. The code and dataset can be accessed at “https://github.com/yaseen21khan/Classification-of-Heart-Sound-Signal-Using-Multiple-Features-/blob/master/README.md”.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 212 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3