Photocatalytic Degradation of Rhodamine B Dye in Aqueous Suspension by ZnO and M-ZnO (M = La3+, Ce3+, Pr3+ and Nd3+) Nanoparticles in the Presence of UV/H2O2

Author:

González-Crisostomo José C.ORCID,López-Juárez RigobertoORCID,Petranovskii VitaliiORCID

Abstract

In this study, nanoparticles of five photocatalytic systems based on pure zinc oxide and with rare earths ions M-ZnO (M = La3+, Ce3+, Pr3+ or Nd3+) calcined at 500 °C or 700 °C were synthesized and investigated as potential photocatalysts for the removal of dyes. The addition of rare earth ions causes a decrease in the bandgap of ZnO; therefore, it can be well used to improve the photocatalytic properties. The photocatalytic activity of the synthesized nanoparticles was evaluated by the degradation of Rhodamine B in the presence of H2O2 under ultraviolet illumination. The results indicate that all the synthesized nanoparticles show good dye degradation efficiency. The highest degradation efficiency was 97.72% for the Ce-ZnO sample calcined at 500 °C and was achieved in 90 min with an excellent constant of the dye degradation rate k = 0.0363 min−1 following a first-order kinetic mechanism. The presence of oxychlorides as secondary phases inhibits the rate of the photocatalytic reaction.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3