A Circuit-Level Solution for Secure Temperature Sensor

Author:

Kajol Mashrafi Alam1ORCID,Monjur Mohammad Mezanur Rahman1,Yu Qiaoyan1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA

Abstract

Temperature sensors play an important role in modern monitoring and control applications. When more and more sensors are integrated into internet-connected systems, the integrity and security of sensors become a concern and cannot be ignored anymore. As sensors are typically low-end devices, there is no built-in defense mechanism in sensors. It is common that system-level defense provides protection against security threats on sensors. Unfortunately, high-level countermeasures do not differentiate the root of cause and treat all anomalies with system-level recovery processes, resulting in high-cost overhead on delay and power consumption. In this work, we propose a secure architecture for temperature sensors with a transducer and a signal conditioning unit. The proposed architecture estimates the sensor data with statistical analysis and generates a residual signal for anomaly detection at the signal conditioning unit. Moreover, complementary current–temperature characteristics are exploited to generate a constant current reference for attack detection at the transducer level. Anomaly detection at the signal conditioning unit and attack detection at the transducer unit make the temperature sensor attack resilient to intentional and unintentional attacks. Simulation results show that our sensor is capable of detecting an under-powering attack and analog Trojan from a significant signal vibration in the constant current reference. Furthermore, the anomaly detection unit detects anomalies at the signal conditioning level from the generated residual signal. The proposed detection system is resilient against any intentional and unintentional attacks, with a detection rate of 97.73%.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3