Health Status Recognition Method for Rotating Machinery Based on Multi-Scale Hybrid Features and Improved Convolutional Neural Networks

Author:

Cao Xiangang12,Guo Xingyu12,Duan Yong12,Zhang Fuqiang12,Fan Hongwei12ORCID,Xu Xin12

Affiliation:

1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. Shaanxi Province Key Laboratory of Intelligent Detection and Control of Mining Electromechanical Equipment, Xi’an 710054, China

Abstract

Rotating machinery is susceptible to harsh environmental interference, and fault signal features are challenging to extract, leading to difficulties in health status recognition. This paper proposes multi-scale hybrid features and improved convolutional neural networks (MSCCNN) health status identification methods for rotating machinery. Firstly, the rotating machinery vibration signal is decomposed into intrinsic modal components (IMF) using empirical wavelet decomposition, and multi-scale hybrid feature sets are constructed by simultaneously extracting time-domain, frequency-domain and time-frequency-domain features based on the original vibration signal and the intrinsic modal components it decomposes. Secondly, using correlation coefficients to select features sensitive to degradation, construct rotating machinery health indicators based on kernel principal component analysis and complete health state classification. Finally, a convolutional neural network model (MSCCNN) incorporating multi-scale convolution and hybrid attention mechanism modules is developed for health state identification of rotating machinery, and an improved custom loss function is applied to improve the superiority and generalization ability of the model. The bearing degradation data set of Xi’an Jiaotong University is used to verify the effectiveness of the model. The recognition accuracy of the model is 98.22%, which is 5.83%, 3.30%, 2.29%, 1.52%, and 4.31% higher than that of SVM, CNN, CNN + CBAM, MSCNN, and MSCCNN + conventional features, respectively. The PHM2012 challenge dataset is used to increase the number of samples to validate the model effectiveness, and the model recognition accuracy is 97.67%, which is 5.63%, 1.88%, 1.36%, 1.49%, and 3.69% higher compared to SVM, CNN, CNN + CBAM, MSCNN, and MSCCNN + conventional features methods, respectively. The MSCCNN model recognition accuracy is 98.67% when validated on the degraded dataset of the reducer platform.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3