Decoding Electroencephalography Signal Response by Stacking Ensemble Learning and Adaptive Differential Evolution

Author:

Ribeiro Matheus Henrique Dal Molin12ORCID,da Silva Ramon Gomes1ORCID,Larcher José Henrique Kleinubing3ORCID,Mendes Andre4,Mariani Viviana Cocco35ORCID,Coelho Leandro dos Santos15ORCID

Affiliation:

1. Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University of Paraná (PUCPR), R. Imaculada Conceição 1155, Curitiba 80215-901, PR, Brazil

2. Department of Mathematics, Federal University of Technology—Paraná (UTFPR), Via do Conhecimento, KM 01—Fraron, Pato Branco 85503-390, PR, Brazil

3. Mechanical Engineering Graduate Program (PPGEM), Pontifical Catholic University of Paraná (PUCPR), R. Imaculada Conceição 1155, Curitiba 80215-901, PR, Brazil

4. Department of Economics, Massachusetts Institute of Technology, 292 Main St, Cambridge, MA 02142, USA

5. Department of Electrical Engineering, Federal University of Paraná (UFPR), R. Evaristo F. Ferreira da Costa 384, Curitiba 81530-000, PR, Brazil

Abstract

Electroencephalography (EEG) is an exam widely adopted to monitor cerebral activities regarding external stimuli, and its signals compose a nonlinear dynamical system. There are many difficulties associated with EEG analysis. For example, noise can originate from different disorders, such as muscle or physiological activity. There are also artifacts that are related to undesirable signals during EEG recordings, and finally, nonlinearities can occur due to brain activity and its relationship with different brain regions. All these characteristics make data modeling a difficult task. Therefore, using a combined approach can be the best solution to obtain an efficient model for identifying neural data and developing reliable predictions. This paper proposes a new hybrid framework combining stacked generalization (STACK) ensemble learning and a differential-evolution-based algorithm called Adaptive Differential Evolution with an Optional External Archive (JADE) to perform nonlinear system identification. In the proposed framework, five base learners, namely, eXtreme Gradient Boosting, a Gaussian Process, Least Absolute Shrinkage and Selection Operator, a Multilayer Perceptron Neural Network, and Support Vector Regression with a radial basis function kernel, are trained. The predictions from all these base learners compose STACK’s layer-0 and are adopted as inputs of the Cubist model, whose hyperparameters were obtained by JADE. The model was evaluated for decoding the electroencephalography signal response to wrist joint perturbations. The variance accounted for (VAF), root-mean-squared error (RMSE), and Friedman statistical test were used to validate the performance of the proposed model and compare its results with other methods in the literature, including the base learners. The JADE-STACK model outperforms the other models in terms of accuracy, being able to explain around, as an average of all participants, 94.50% and 67.50% (standard deviations of 1.53 and 7.44, respectively) of the data variability for one step ahead and three steps ahead, which makes it a suitable approach to dealing with nonlinear system identification. Also, the improvement over state-of-the-art methods ranges from 0.6% to 161% and 43.34% for one step ahead and three steps ahead, respectively. Therefore, the developed model can be viewed as an alternative and additional approach to well-established techniques for nonlinear system identification once it can achieve satisfactory results regarding the data variability explanation.

Funder

National Council for Scientific and Technological Development—CNPq

Fundação Araucária PRONEX

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3