Abstract
In this paper, we propose and numerically analyze a novel design for a high sensitivity refractive index (RI) sensor based on long-range surface plasmon resonance in H-shaped microstructured optical fiber with symmetrical dielectric–metal–dielectric waveguide (DMDW). The influences of geometrical and optical characteristics of the DMDW on the sensor performance are investigated theoretically. A large RI analyte range from 1.33 to 1.39 is evaluated to study the sensing characteristics of the proposed structure. The obtained results show that the DMDW improves the coupling between the fiber core mode and the plasmonic mode. The best configuration shows 27 nm of full width at half maximum with a resolution close to 1.3 × 10 − 5 nm, a high sensitivity of 7540 nm/RIU and a figure of merit of 280 RIU − 1 . Additionally, the proposed device has potential for multi-analyte sensing and self-reference when dissimilar DMDWs are deposited on the inner walls of the side holes. The proposed sensor structure is simple and presents very competitive sensing parameters, which demonstrates that this device is a promising alternative and could be used in a wide range of application areas.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献