Abstract
Earth’s critical zone is defined as a plant–soil–water system, which covers a wide area and has a large vertical thickness, but the soil elemental stoichiometry characteristics of the critical zone at different depths are still unclear. In this study, the spatial distribution of soil carbon (C), nitrogen (N) and phosphorus (P) in the critical zone of a typical wetland in Dongting Lake, China, and their ecological chemometric characteristics were analyzed. The results indicated that: (1) the average C, N and P contents were 18.05, 0.86 and 0.52 g/kg, respectively, with a decreasing trend from the surface to the deeper layers. The soil is relatively rich in C and P, while N is the main element limiting plant growth and development. (2) The mean values of soil C/N, N/P and C/P were 21.1, 1.7 and 35.4 respectively, with the C/N ratio and C/P ratio showing a trend of increasing and then decreasing in the vertical direction and reaching a maximum at a depth of 2–5 m below ground. (3) According to the correlation results, C, N and P in soils are coupled and influenced by each other (p < 0.001), and pH, infiltration coefficient and human activities are closely related to the spatial distribution of C, N and P. (4) Stable Redfield ratios (1:1.6:35.4) may exist in lake wetland soils, and future studies should be conducted for complete systems of the same type of wetlands. The results of the study will provide a theoretical basis for the sustainable development and scientific management of lake wetlands.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献