Optimizing Buildings’ Life Cycle Performance While Allowing Diversity in the Early Design Stage

Author:

Yu HanzeORCID,Yang Wei,Li Qiyuan,Li Jie

Abstract

The main considerations in the early stage of architectural design are usually related to form and function. At the same time, with the growing concern regarding energy saving and carbon emission reduction, the parameters for the construction and physical quality of buildings are receiving more attention at the conceptual and schematic design stages. Diverse design options can emerge with the large number of variables to be considered in these stages. Moreover, the combined efforts to reduce buildings’ life cycle environmental impacts and cost, as well as the non-linear and often tradeoff relationship between the two objectives, make finding optimal design solutions for buildings’ life cycle performance complicated. Previous studies have established workflows to optimize buildings’ life cycle energy consumption, GWP, and/or cost; however, architectural design diversity has not been sufficiently discussed at the same time. In this study, a parametric optimization design process is established, aiming at minimizing the building’s operational energy consumption, life cycle environmental impacts, and life cycle cost. The setting of variables, as well as the workflows of the optimization process, is discussed from the perspective of both life cycle performance and architectural design diversity. A small-scale exhibition hall in China’s cold climate zone is selected as a case study. To approach the best design process applicable to this case, the optimal solution sets from different workflows under different variable settings are compared. The results show that by setting geometric and material variables in different steps in the entire optimization process, the resulting solutions can be a balance of architectural design and performance. In this case study, optimizing all of the design variables in one-step turned out to provide the best balance between design diversity and life cycle performance in the early design stage.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference39 articles.

1. 2021 Global Status Report for Buildings and Construction https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction

2. China Building Energy Consumption Research Report 2020;Build. Energy Effic.,2021

3. Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3