Abstract
Recent progress in deep learning has led to accurate and efficient generic object detection networks. Training of highly reliable models depends on large datasets with highly textured and rich images. However, in real-world scenarios, the performance of the generic object detection system decreases when (i) occlusions hide the objects, (ii) objects are present in low-light images, or (iii) they are merged with background information. In this paper, we refer to all these situations as challenging environments. With the recent rapid development in generic object detection algorithms, notable progress has been observed in the field of deep learning-based object detection in challenging environments. However, there is no consolidated reference to cover the state of the art in this domain. To the best of our knowledge, this paper presents the first comprehensive overview, covering recent approaches that have tackled the problem of object detection in challenging environments. Furthermore, we present a quantitative and qualitative performance analysis of these approaches and discuss the currently available challenging datasets. Moreover, this paper investigates the performance of current state-of-the-art generic object detection algorithms by benchmarking results on the three well-known challenging datasets. Finally, we highlight several current shortcomings and outline future directions.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference106 articles.
1. Object Detection with Discriminatively Trained Part-Based Models
2. Simultaneous detection and segmentation;Hariharan,2014
3. Fusion of detected objects in text for visual question answering;Alberti;arXiv,2019
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献