Monitoring Soil and Ambient Parameters in the IoT Precision Agriculture Scenario: An Original Modeling Approach Dedicated to Low-Cost Soil Water Content Sensors

Author:

Placidi PisanaORCID,Morbidelli RenatoORCID,Fortunati Diego,Papini Nicola,Gobbi Francesco,Scorzoni Andrea

Abstract

A low power wireless sensor network based on LoRaWAN protocol was designed with a focus on the IoT low-cost Precision Agriculture applications, such as greenhouse sensing and actuation. All subsystems used in this research are designed by using commercial components and free or open-source software libraries. The whole system was implemented to demonstrate the feasibility of a modular system built with cheap off-the-shelf components, including sensors. The experimental outputs were collected and stored in a database managed by a virtual machine running in a cloud service. The collected data can be visualized in real time by the user with a graphical interface. The reliability of the whole system was proven during a continued experiment with two natural soils, Loamy Sand and Silty Loam. Regarding soil parameters, the system performance has been compared with that of a reference sensor from Sentek. Measurements highlighted a good agreement for the temperature within the supposed accuracy of the adopted sensors and a non-constant sensitivity for the low-cost volumetric water contents (VWC) sensor. Finally, for the low-cost VWC sensor we implemented a novel procedure to optimize the parameters of the non-linear fitting equation correlating its analog voltage output with the reference VWC.

Funder

Università degli Studi di Perugia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D printing applications in smart farming and food processing;Smart Agricultural Technology;2024-12

2. Review of low-cost, off-grid, biodegradable in situ autonomous soil moisture sensing systems: Is there a perfect solution?;Computers and Electronics in Agriculture;2024-10

3. INTELLIGENT MONITORING OF PAPAYA TREES USING IOT-BASED SENSORS;International Journal of Research -GRANTHAALAYAH;2024-07-05

4. IoT-Driven Transformation of Circular Economy Efficiency: An Overview;Mathematical and Computational Applications;2024-06-28

5. An IoT-based System for Monitoring and Control of Irrigation Processes;2024 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE);2024-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3