Ecological Adaptation of Two Dominant Conifer Species to Extreme Climate in the Tianshan Mountains

Author:

Wu Xuan12,Jiao Liang12ORCID,Liu Xiaoping12,Xue Ruhong12,Qi Changliang12,Du Dashi12

Affiliation:

1. College of Geography and Environment Science, Northwest Normal University, No.967, Anning East Road, Lanzhou 730070, China

2. Key Laboratory of Resource Environment and Sustainable Development, Oasis Northwest Normal University, Lanzhou 730070, China

Abstract

With global warming, the frequency, intensity, and period of extreme climates in more areas will probably increase in the twenty first century. However, the impact of climate extremes on forest vulnerability and the mechanisms by which forests adapt to climate extremes are not clear. The eastern Tianshan Mountains, set within the arid and dry region of Central Asia, is very sensitive to climate change. In this paper, the response of Picea schrenkiana and Larix sibirica to climate fluctuations and their stability were analyzed by Pearson’s correlation based on the observation of interannual change rates of climate indexes in different periods. Additionally, their ecological adaptability to future climate change was explored by regression analysis of climate factors and a selection of master control factors using the Lasso model. We found that the climate has undergone significant changes, especially the temperature, from 1958 to 2012. Around 1985, various extreme climate indexes had obvious abrupt changes. The research results suggested that: (1) the responses of the two tree species to extreme climate changed significantly after the change in temperature; (2) Schrenk spruce was more sensitive than Siberian larch to extreme climate change; and (3) the resistance of Siberian larch was higher than that of Schrenk spruce when faced with climate disturbance events. These results indicate that extreme climate changes will significantly interfere with the trees radial growth. At the same time, scientific management and maintenance measures are taken for different extreme weather events and different tree species.

Funder

Natural Science Foundation of Gansu

CAS “Light of West China”

2022 Major scientific Research Project Cultivation Plan of Northwest Normal University

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3