Experimental and Numerical Investigation on the Ultimate Vertical Bearing Capacity of U-Shaped Girder with Damaged Web

Author:

Zhang Jingfeng,Jing Yuan,Li Pandao,Han Wanshui,Zhang Nan,Zhou YunlaiORCID

Abstract

U-shaped girder has been extensively used for its excellent adaptability in the urban railway transit system. As an open thin-walled structure, significant difference of working mechanism exists between U-shaped girder and conventional section girder (e.g., T section or box section). The thin-walled web plays significant role in the flexural performance of U type girder particularly. Moreover, severe collision may occur between the moving train and the girder, and subsequently results in the decrease of the structural bearing capacity. In this paper, a full-scale test was carried out to examine the ultimate bearing capacity and the failure mechanism of the U-shaped girder, and a refined numerical model was developed to simulate the damage evolution and the failure process. It was shown that the flexural failure occurred on the U-shaped girder under vertical loads. In addition, the ultimate bearing capacity of the structure under different web damage conditions (e.g., web damaged region or damaged range) was studied by applying the displacement based lateral load on the flange of the U-shaped girder to simulate the damage caused by accidental train collision. The numerical results have shown that the damaged web greatly affects the ultimate bearing capacity of U-shaped girder, more severe bearing capacity descending occurs around the middle span rather than the beam ends. The damaged range (length) of the web has less influence on the falling amplitude of bearing capacity. It can be concluded that the major reason accounting for the bearing capacity decrease is that the original section is weakened by the web damage, and consequently results in the buckling of the damaged web and lead to the total failure of the structure. It is recommended that the lateral resistant design for the web should be taken into consideration to ensure the operation safety of the urban railway transportation.

Funder

Natural Science Foundation of China

Natural Science Basic Research of Shaanxi Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. A new type of steel–concrete composite channel girder and its preliminary experimental study

2. Experimental and analytical behavior of a new type of concrete-filled steel tube tied-arch bridge with trough girder

3. Behavior of composite box bridge girders under localized fire exposure conditions;Zhang;Struct. Eng. Mech.,2019

4. Evaluating fire resistance of prestressed concrete bridge girders;Zhang;Struct. Eng. Mech.,2017

5. Effects of repeated loading on creep deflection of reinforced concrete beams

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3