Cost-Effective Optimization of an Array of Wave Energy Converters in Front of a Vertical Seawall

Author:

Natarajan Senthil Kumar1,Cho Il Hyoung1ORCID

Affiliation:

1. Department of Ocean System Engineering, Jeju National University, Jeju 690-756, Republic of Korea

Abstract

The present paper focuses on investigating the cost-effective configuration of an array of wave energy converters (WECs) composed of vertical cylinders situated in front of a vertical seawall in irregular waves. First, the hydrodynamic calculations are performed using a WAMIT commercial code based on linear potential theory, where the influence of the vertical wall is incorporated using the method of image. The viscous damping experienced by the oscillating cylinder is considered through CFD simulations of a free decay test. A variety of parameters, including WEC diameter, number of WECs, and the spacing between them, are considered to determine an economically efficient WEC configuration. The design of the WEC configuration is aided by a cost indicator, defined as the ratio of the total submerged volume of the WEC to overall power capture. The cost-effective configuration of WECs is achieved when WECs are positioned in front of a vertical wall and the distance between them is kept short. It can be explained that the trapped waves formed between adjacent WECs as well as the standing waves in front of a seawall significantly intensify wave fields around WECs and consequently amplify the heave motion of each WEC. A cost-effective design strategy of WEC deployment enhances the wave energy greatly and, consequently, contributes to constructing the wave energy farm.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. (2023, November 16). Hannah Ritchie and Max Roser, Emissions by Sector. Available online: https://ourworldindata.org/emissions-by-sector.

2. IEA (2022). World Energy Outlook 2022, IEA.

3. McCormick, M.E. (2007). Ocean Wave Energy Conversion, Dover Publication Inc.. Chapter 1.

4. The economics of wave energy: A review;Astariz;Renew. Sustain. Energy Rev.,2015

5. Optimization of dimensions and layout of an array of wave energy converters;Lyu;Ocean Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3