Affiliation:
1. School of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580, China
2. School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China
3. National Energy Investment Group Dadu River Drainage Area Hydroelectricity Development Co., Ltd., Chengdu 610095, China
Abstract
There are various secondary flow types in turbodrill’s blade cascades, and all kinds of secondary flow have a significant effect on flow loss. In this paper, the stator cascade of φ160 mm turbodrill is taken as the research object, and the CFD method is used to analyze the secondary flow and its evolution. The origin and evolution mechanism of secondary flow is explained from the flow mechanism. The results show that when the working rotary speed is lower than the design rotary speed, the secondary flows are composed of suction surface separation vortex, horseshoe vortex, and passage vortex coexisting. The intensity of secondary flows increases with the decrease of rotary speed. When the working rotary speed is near the design rotary speed, the secondary flows include horseshoe vortex, passage vortex, and corner vortex. When the working rotary speed is higher than the design rotary speed, the secondary flows consist of pressure surface separation vortex and suction surface trailing edge separation vortex. Regardless of rotary speed, secondary flow intensity in the shroud region is greater than the hub region, which has a greater influence on the mainstream. In addition, compared with high rotary speeds, secondary flow intensity is greater at low rotary speeds, resulting in greater flow losses.
Funder
Key Laboratory of Deep Geodrilling Technology, Ministry of Land and Resources
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献