Investigation on Secondary Flow of Turbodrill Stator Cascade with Variable Rotary Speed Conditions

Author:

Gong Yan12ORCID,Liu Yonghong1,Wang Cong3,Zhang Jie2,He Mengyuan2

Affiliation:

1. School of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China

3. National Energy Investment Group Dadu River Drainage Area Hydroelectricity Development Co., Ltd., Chengdu 610095, China

Abstract

There are various secondary flow types in turbodrill’s blade cascades, and all kinds of secondary flow have a significant effect on flow loss. In this paper, the stator cascade of φ160 mm turbodrill is taken as the research object, and the CFD method is used to analyze the secondary flow and its evolution. The origin and evolution mechanism of secondary flow is explained from the flow mechanism. The results show that when the working rotary speed is lower than the design rotary speed, the secondary flows are composed of suction surface separation vortex, horseshoe vortex, and passage vortex coexisting. The intensity of secondary flows increases with the decrease of rotary speed. When the working rotary speed is near the design rotary speed, the secondary flows include horseshoe vortex, passage vortex, and corner vortex. When the working rotary speed is higher than the design rotary speed, the secondary flows consist of pressure surface separation vortex and suction surface trailing edge separation vortex. Regardless of rotary speed, secondary flow intensity in the shroud region is greater than the hub region, which has a greater influence on the mainstream. In addition, compared with high rotary speeds, secondary flow intensity is greater at low rotary speeds, resulting in greater flow losses.

Funder

Key Laboratory of Deep Geodrilling Technology, Ministry of Land and Resources

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3