A Thermoelectric Performance Study of Layered Bi2TeI Weak Topological Insulator Materials

Author:

Tu Kaihua,Wei Ping,Zhou Hongyu,Mu XinORCID,Zhu Wanting,Nie Xiaolei,Zhao Wenyu

Abstract

Topological insulators have been considered as promising thermoelectric materials because of their high electrical transport properties and low thermal conductivity. In this work, the crystal structure, chemical composition, and thermoelectric transport properties of a weak topological insulator, Bi2TeI, were studied. Bi2TeI possesses the lowest lattice thermal conductivity compared with the analogously layered compounds Bi2Te3 and BiTeI. Cu and Zn were used as dopants with the aim of optimizing the thermoelectric performance. It was found that doping Bi2TeI with Cu led to decreased carrier concentration and power factor while doping with Zn resulted in increased carrier concentration and improved power factor. Accompanied with reduced lattice thermal conductivity, Zn-doped samples showed a largely improved dimensionless figure of merit, ZT. The largest ZT was 0.077 for Zn0.01Bi2TeI, increased by 70% as compared with the undoped Bi2TeI.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3