An Analysis of the Vulnerability of Two Common Deep Learning-Based Medical Image Segmentation Techniques to Model Inversion Attacks

Author:

Subbanna Nagesh,Wilms MatthiasORCID,Tuladhar AnupORCID,Forkert Nils D.ORCID

Abstract

Recent research in computer vision has shown that original images used for training of deep learning models can be reconstructed using so-called inversion attacks. However, the feasibility of this attack type has not been investigated for complex 3D medical images. Thus, the aim of this study was to examine the vulnerability of deep learning techniques used in medical imaging to model inversion attacks and investigate multiple quantitative metrics to evaluate the quality of the reconstructed images. For the development and evaluation of model inversion attacks, the public LPBA40 database consisting of 40 brain MRI scans with corresponding segmentations of the gyri and deep grey matter brain structures were used to train two popular deep convolutional neural networks, namely a U-Net and SegNet, and corresponding inversion decoders. Matthews correlation coefficient, the structural similarity index measure (SSIM), and the magnitude of the deformation field resulting from non-linear registration of the original and reconstructed images were used to evaluate the reconstruction accuracy. A comparison of the similarity metrics revealed that the SSIM is best suited to evaluate the reconstruction accuray, followed closely by the magnitude of the deformation field. The quantitative evaluation of the reconstructed images revealed SSIM scores of 0.73±0.12 and 0.61±0.12 for the U-Net and the SegNet, respectively. The qualitative evaluation showed that training images can be reconstructed with some degradation due to blurring but can be correctly matched to the original images in the majority of the cases. In conclusion, the results of this study indicate that it is possible to reconstruct patient data used for training of convolutional neural networks and that the SSIM is a good metric to assess the reconstruction accuracy.

Funder

Office of the Privacy Commissioner of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3