Neural Networks Application for Accurate Retina Vessel Segmentation from OCT Fundus Reconstruction

Author:

Marciniak Tomasz1ORCID,Stankiewicz Agnieszka1ORCID,Zaradzki Przemyslaw1ORCID

Affiliation:

1. Division of Electronic Systems and Signal Processing, Institute of Automatic Control and Robotics, Poznan University of Technology, 60-965 Poznan, Poland

Abstract

The use of neural networks for retinal vessel segmentation has gained significant attention in recent years. Most of the research related to the segmentation of retinal blood vessels is based on fundus images. In this study, we examine five neural network architectures to accurately segment vessels in fundus images reconstructed from 3D OCT scan data. OCT-based fundus reconstructions are of much lower quality compared to color fundus photographs due to noise and lower and disproportionate resolutions. The fundus image reconstruction process was performed based on the segmentation of the retinal layers in B-scans. Three reconstruction variants were proposed, which were then used in the process of detecting blood vessels using neural networks. We evaluated performance using a custom dataset of 24 3D OCT scans (with manual annotations performed by an ophthalmologist) using 6-fold cross-validation and demonstrated segmentation accuracy up to 98%. Our results indicate that the use of neural networks is a promising approach to segmenting the retinal vessel from a properly reconstructed fundus.

Funder

Poznań University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Segmentation of Retina Vessels in 2D OCT-Reconstructed Fundus Images with 3D UNet;2023 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA);2023-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3