Spatio-Temporal Assessment of Land Deformation as a Factor Contributing to Relative Sea Level Rise in Coastal Urban and Natural Protected Areas Using Multi-Source Earth Observation Data

Author:

Elias PanagiotisORCID,Benekos George,Perrou Theodora,Parcharidis Issaak

Abstract

The rise in sea level is expected to considerably aggravate the impact of coastal hazards in the coming years. Low-lying coastal urban centers, populated deltas, and coastal protected areas are key societal hotspots of coastal vulnerability in terms of relative sea level change. Land deformation on a local scale can significantly affect estimations, so it is necessary to understand the rhythm and spatial distribution of potential land subsidence/uplift in coastal areas. The present study deals with the determination of the relative vertical rates of the land deformation and the sea-surface height by using multi-source Earth observation—synthetic aperture radar (SAR), global navigation satellite system (GNSS), tide gauge, and altimetry data. To this end, the multi-temporal SAR interferometry (MT-InSAR) technique was used in order to exploit the most recent Copernicus Sentinel-1 data. The products were set to a reference frame by using GNSS measurements and were combined with a re-analysis model assimilating satellite altimetry data, obtained by the Copernicus Marine Service. Additional GNSS and tide gauge observations have been used for validation purposes. The proposed methodological approach has been implemented in three pilot cases: the city of Alexandroupolis in the Evros Delta region, the coastal zone of Thermaic Gulf, and the coastal area of Killini, Araxos (Patras Gulf) in the northwestern Peloponnese, which are Greek coastal areas with special characteristics. The present research provides localized relative sea-level estimations for the three case studies. Their variation is high, ranging from values close to zero, i.e., from 5–10 cm and 30 cm in 50 years for urban areas to values of 50–60 cm in 50 years for rural areas, close to the coast. The results of this research work can contribute to the effective management of coastal areas in the framework of adaptation and mitigation strategies attributed to climate change. Scaling up the proposed methodology to a continental level is required in order to overcome the existing lack of proper assessment of the relevant hazard in Europe.

Funder

European Social Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference73 articles.

1. Sea-level rise caused by climate change and its implications for society

2. Coastal Systems and Low-Lying Areas;Wong,2014

3. Hypsographic demography: The distribution of human population by altitude

4. A Global Analysis of Human Settlement in Coastal Zones;Small;J. Coast. Res.,2003

5. Economic motivation for raising coastal flood defenses in Europe;Vousdoukas;Nat. Commun.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3