Super Resolution by Deep Learning Improves Boulder Detection in Side Scan Sonar Backscatter Mosaics

Author:

Feldens Peter

Abstract

In marine habitat mapping, a demand exists for high-resolution maps of the seafloor both for marine spatial planning and research. One topic of interest is the detection of boulders in side scan sonar backscatter mosaics of continental shelf seas. Boulders are oftentimes numerous, but encompass few pixels in backscatter mosaics. Therefore, both their automatic and manual detection is difficult. In this study, located in the German Baltic Sea, the use of super resolution by deep learning to improve the manual and automatic detection of boulders in backscatter mosaics is explored. It is found that upscaling of mosaics by a factor of 2 to 0.25 m or 0.125 m resolution increases the performance of small boulder detection and boulder density grids. Upscaling mosaics with 1.0 m pixel resolution by a factor of 4 improved performance, but the results are not sufficient for practical application. It is suggested that mosaics of 0.5 m resolution can be used to create boulder density grids in the Baltic Sea in line with current standards following upscaling.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3