Survey of 8 UAV Set-Covering Algorithms for Terrain Photogrammetry

Author:

Hammond Joshua E.ORCID,Vernon Cory A.ORCID,Okeson Trent J.,Barrett Benjamin J.,Arce SamuelORCID,Newell Valerie,Janson Joseph,Franke Kevin W.ORCID,Hedengren John D.ORCID

Abstract

Remote sensing with unmanned aerial vehicles (UAVs) facilitates photogrammetry for environmental and infrastructural monitoring. Models are created with less computational cost by reducing the number of photos required. Optimal camera locations for reducing the number of photos needed for structure-from-motion (SfM) are determined through eight mathematical set-covering algorithms as constrained by solve time. The algorithms examined are: traditional greedy, reverse greedy, carousel greedy (CG), linear programming, particle swarm optimization, simulated annealing, genetic, and ant colony optimization. Coverage and solve time are investigated for these algorithms. CG is the best method for choosing optimal camera locations as it balances number of photos required and time required to calculate camera positions as shown through an analysis similar to a Pareto Front. CG obtains a statistically significant 3.2 fewer cameras per modeled area than base greedy algorithm while requiring just one additional order of magnitude of solve time. For comparison, linear programming is capable of fewer cameras than base greedy but takes at least three orders of magnitude longer to solve. A grid independence study serves as a sensitivity analysis of the CG algorithms α (iteration number) and β (percentage to be recalculated) parameters that adjust traditional greedy heuristics, and a case study at the Rock Canyon collection dike in Provo, UT, USA, compares the results of all eight algorithms and the uniqueness (in terms of percentage comparisons based on location/angle metadata and qualitative visual comparison) of each selected set. Though this specific study uses SfM, the principles could apply to other instruments such as multi-spectral cameras or aerial LiDAR.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3