LiDAR-Aided Interior Orientation Parameters Refinement Strategy for Consumer-Grade Cameras Onboard UAV Remote Sensing Systems

Author:

Zhou TianORCID,Hasheminasab Seyyed MeghdadORCID,Ravi RadhikaORCID,Habib AymanORCID

Abstract

Unmanned aerial vehicles (UAVs) are quickly emerging as a popular platform for 3D reconstruction/modeling in various applications such as precision agriculture, coastal monitoring, and emergency management. For such applications, LiDAR and frame cameras are the two most commonly used sensors for 3D mapping of the object space. For example, point clouds for the area of interest can be directly derived from LiDAR sensors onboard UAVs equipped with integrated global navigation satellite systems and inertial navigation systems (GNSS/INS). Imagery-based mapping, on the other hand, is considered to be a cost-effective and practical option and is often conducted by generating point clouds and orthophotos using structure from motion (SfM) techniques. Mapping with photogrammetric approaches requires accurate camera interior orientation parameters (IOPs), especially when direct georeferencing is utilized. Most state-of-the-art approaches for determining/refining camera IOPs depend on ground control points (GCPs). However, establishing GCPs is expensive and labor-intensive, and more importantly, the distribution and number of GCPs are usually less than optimal to provide adequate control for determining and/or refining camera IOPs. Moreover, consumer-grade cameras with unstable IOPs have been widely used for mapping applications. Therefore, in such scenarios, where frequent camera calibration or IOP refinement is required, GCP-based approaches are impractical. To eliminate the need for GCPs, this study uses LiDAR data as a reference surface to perform in situ refinement of camera IOPs. The proposed refinement strategy is conducted in three main steps. An image-based sparse point cloud is first generated via a GNSS/INS-assisted SfM strategy. Then, LiDAR points corresponding to the resultant image-based sparse point cloud are identified through an iterative plane fitting approach and are referred to as LiDAR control points (LCPs). Finally, IOPs of the utilized camera are refined through a GNSS/INS-assisted bundle adjustment procedure using LCPs. Seven datasets over two study sites with a variety of geomorphic features are used to evaluate the performance of the developed strategy. The results illustrate the ability of the proposed approach to achieve an object space absolute accuracy of 3–5 cm (i.e., 5–10 times the ground sampling distance) at a 41 m flying height.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3